ANNEX M

Methodology for Estimating CH₄ and N₂O Emissions from Manure Management

This annex presents a discussion of the methodology used to calculate methane and nitrous oxide emissions from manure management systems. More detailed discussions of selected topics may be found in supplemental memoranda in the supporting docket to this inventory.

The following steps were used to estimate methane and nitrous oxide emissions from the management of livestock manure. Nitrous oxide emissions associated with pasture, range, or paddock systems and daily spread systems are included in the emissions estimates for Agricultural Soil Management (see Annex N).

Step 1: Livestock Population Characterization Data

Annual animal population data for 1990 through 2001 for all livestock types, except horses and goats, were obtained from the USDA National Agricultural Statistics Service (USDA 1994a-b, 1995a-b, 1998a-b, 1999a-c, 2000a-g, 2001a-f, 2002 a-f). The actual population data used in the emissions calculations for cattle and swine were downloaded from the USDA National Agricultural Statistics Service Population Estimates Data Base (http://www.usda.gov/nass/). Horse population data were obtained from the FAOSTAT database (FAO 2002). Goat population data for 1992 and 1997 were obtained from the Census of Agriculture (USDA 1999d). Information regarding poultry turnover (i.e., slaughter) rate was obtained from state Natural Resource Conservation Service personnel (Lange 2000).

A summary of the livestock population characterization data used to calculate methane and nitrous oxide emissions is presented in Table M-1.

Dairy Cattle: The total annual dairy cow and heifer state population data for 1990 through 2001 are provided in various USDA National Agricultural Statistics Service reports (1995a, 1999a, 2000a-b, 2001a-b, 2002a-b). The actual total annual dairy cow and heifer state population data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.usda.gov/nass/) for Cattle and Calves. The specific data used to estimate dairy cattle populations are "Cows That Calved – Milk" and "Heifers 500+ Lbs – Milk Repl."

Beef Cattle: The total annual beef cattle population data for each state for 1990 through 2001 are provided in various USDA National Agricultural Statistics Service reports (1995a, 1999a, 2000a-b, 2001a-b, 2002a-b). The actual data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.usda.gov/nass/), Cattle and Calves. The specific data used to estimate beef cattle populations are: "Cows That Calved—Beef," "Heifers 500+ Lbs—Beef Repl," "Heifers 500+ Lbs—Other," and "Steers 500+ Lbs." Additional information regarding the percent of beef steer and heifers on feedlots was obtained from contacts with the national USDA office (Milton 2000).

For all beef cattle groups (cows, heifers, steer, bulls, and calves), the USDA data provide cattle inventories from January and July of each year. Cattle inventories change over the course of the year, sometimes significantly, as new calves are born and as fattened cattle are slaughtered; therefore, to develop the best estimate for the annual animal population, the average inventory of cattle by state was calculated. USDA provides January inventory data for each state; however, July inventory data is only presented as a total for the United States. In order to estimate average annual populations by state, a "scaling factor" was developed that adjusts the January state-level data to reflect July inventory changes. This factor equals the average of the US January and July data divided by the January data. The scaling factor is derived for each cattle group and is then applied to the January state-level data to arrive at the state-level annual population estimates.

Swine: The total annual swine population data for each state for 1990 through 2001 are provided in various USDA National Agricultural Statistics Service reports (USDA 1994a, 1998a, 2000c, 2001c, 2002c). The USDA data provides quarterly data for each swine subcategory: breeding, market under 60 pounds (less than 27 kg), market 60 to 119 pounds (27 to 54 kg), market 120 to 179 pounds (54 to 81 kg), and market 180 pounds and over (greater than 82 kg). The average of the quarterly data was used in the emissions calculations. For states where only

December inventory is reported, the December data were used directly. The actual data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.usda.gov/nass/), Hogs and Pigs.

Sheep: The total annual sheep population data for each state for 1990 through 2001 were obtained from USDA National Agricultural Statistics Service (USDA 1994b, 1999c, 2000f, 2001f, 2002f). Population data for lamb and sheep on feed are not available after 1993. The number of lamb and sheep on feed for 1994 through 2001 were calculated using the average of the percent of lamb and sheep on feed from 1990 through 1993. In addition, all of the sheep and lamb "on feed" are not necessarily on "feedlots"; they may be on pasture/crop residue supplemented by feed. Data for those animals on feed that are on feedlots versus pasture/crop residue were provided only for lamb in 1993. To calculate the populations of sheep and lamb on feedlots for all years, it was assumed that the percentage of sheep and lamb on feed that are on feedlots versus pasture/crop residue is the same as that for lambs in 1993 (Anderson 2000).

Goats: Annual goat population data by state were available for only 1992 and 1997 (USDA 1999d). The data for 1992 were used for 1990 through 1992 and the data for 1997 were used for 1997 through 2001. Data for 1993 through 1996 were extrapolated using the 1992 and 1997 data.

Poultry: Annual poultry population data by state for the various animal categories (hens 1 year and older, total pullets, other chickens, broilers, and turkeys) were obtained from USDA National Agricultural Statistics Service (USDA 1995b, 1998b, 1999b, 2000d-e, 2000g, 2001d-e, 2002d-e). The annual population data for boilers and turkeys were adjusted for turnover (i.e., slaughter) rate (Lange 2000).

Horses: The Food and Agriculture Organization (FAO) publishes annual horse population data, which were accessed from the FAOSTAT database at http://apps.fao.org/ (FAO 2002).

Step 2: Waste Characteristics Data

Methane and nitrous oxide emissions calculations are based on the following animal characteristics for each relevant livestock population:

- Volatile solids excretion rate (VS)
- Maximum methane producing capacity (B₀) for U.S. animal waste
- Nitrogen excretion rate (N_{ex})
- Typical animal mass (TAM)

Table M-2 presents a summary of the waste characteristics used in the emissions estimates. Published sources were reviewed for U.S.-specific livestock waste characterization data that would be consistent with the animal population data discussed in Step 1. The USDA's National Engineering Handbook, Agricultural Waste Management Field Handbook (USDA 1996a) is one of the primary sources of waste characteristics. In some cases, data from the American Society of Agricultural Engineers, Standard D384.1 (ASAE 1999) were used to supplement the USDA data. The volatile solids (VS) and nitrogen excretion data for breeding swine are a combination of the types of animals that make up this animal group, namely gestating and farrowing swine and boars. It is assumed that a group of breeding swine is typically broken out as 80 percent gestating sows, 15 percent farrowing swine, and 5 percent boars (Safley 2000).

The method for calculating volatile solids production from beef and dairy cows, heifers, and steer is based on the relationship between animal diet and energy utilization, which is modeled in the enteric fermentation portion of the inventory. Volatile solids content of manure equals the fraction of the diet consumed by cattle that is not digested and thus excreted as fecal material which, when combined with urinary excretions, constitutes manure. The enteric fermentation model requires the estimation of gross energy intake and its fractional digestibility, digestible energy, in the process of estimating enteric methane emissions (see Appendix K for details on the enteric energy model). These two inputs were used to calculate the indigestible energy per animal unit as gross energy minus digestible energy plus an additional 2 percent of gross energy for urinary energy excretion per animal unit. This was then converted to volatile solids production per animal unit using the typical conversion of dietary gross energy to dry organic matter of 20.1 MJ/kg (Garrett and Johnson, 1983). The equation used for calculating volatile solids is as follows:

```
VS production (kg) = [GE - DE + (0.02 * GE)] / 20.1 (MJ/kg)
Where:

GE = gross \ energy \ intake \ (MJ)

DE = digestible \ energy \ (MJ)
```

This equation was used to calculate volatile solids rates for each region, cattle type, and year, with state-specific volatile solids excretion rates assigned based on which region of the country the state is located in (Peterson et al., 2002).

Table M-3 presents the state-specific volatile solids production rates used for 2001.

Step 3: Waste Management System Usage Data

Estimates were made of the distribution of wastes by management system and animal type using the following sources of information:

- State contacts to estimate the breakout of dairy cows on pasture, range, or paddock, and the percent of wastes managed by daily spread systems (Deal 2000, Johnson 2000, Miller 2000, Stettler 2000, Sweeten 2000, Wright 2000)
- Data collected for EPA's Office of Water, including site visits, to medium and large beef feedlot, dairy, swine, and poultry operations (EPA 2001a)
- Contacts with the national USDA office to estimate the percent of beef steer and heifers on feedlots (Milton 2000)
- Survey data collected by USDA (USDA 1998d, 2000h) and re-aggregated by farm size and geographic location, used for small operations
- Survey data collected by the United Egg Producers (UEP 1999) and USDA (2000i) and previous EPA estimates (EPA 1992) of waste distribution for layers
- Survey data collected by Cornell University on dairy manure management operations in New York (Poe 1999)
- Previous EPA estimates of waste distribution for sheep, goat, and horse operations (EPA 1992)

Beef Feedlots: Based on EPA site visits and state contacts, beef feedlot manure is almost exclusively managed in drylots. Therefore, 100 percent of the manure excreted at beef feedlots is expected to be deposited in drylots and generate emissions. In addition, a portion of the manure that is deposited in the drylot will run off the drylot during rain events and be captured in a waste storage pond. An estimate of the runoff has been made by EPA's Office of Water for various geographic regions of the United States. These runoff numbers were used to estimate emissions from runoff storage ponds located at beef feedlots (EPA 2001a).

Dairy Cows: Based on EPA site visits and state contacts, manure from dairy cows at medium (200 through 700 head) and large (greater than 700 head) operations are managed using either flush systems or scrape/slurry systems. In addition, they may have a solids separator in place prior to their storage component. Estimates of the percent of farms that use each type of system (by geographic region) were developed by EPA's Office of Water, and were used to estimate the percent of wastes managed in lagoons (flush systems), liquid/slurry systems (scrape systems), and solid storage (separated solids) (EPA 2001a). Manure management system data for small (fewer than 200 head) dairies were obtained from USDA (USDA 2000h). These operations are more likely to use liquid/slurry and solid storage management systems than anaerobic lagoon systems. The reported manure management systems were deep pit, liquid/slurry (also includes slurry tank, slurry earth-basin, and aerated lagoon), anaerobic lagoon, and solid storage (also includes manure pack, outside storage, and inside storage).

The percent of wastes by system was estimated using the USDA data broken out by geographic region and farm size. Farm-size distribution data reported in the 1992 and 1997 Census of Agriculture (USDA 1999e) were used to determine the percentage of all dairies using the various manure management systems. Due to lack of

additional data for other years, it was assumed that the data provided for 1992 were the same as that for 1990 and 1991, and data provided for 1997 were the same as that for 1998, 1999, 2000, and 2001. Data for 1993 through 1996 were extrapolated using the 1992 and 1997 data.

Data regarding the use of daily spread and pasture, range, or paddock systems for dairy cattle were obtained from personal communications with personnel from several organizations. These organizations include state NRCS offices, state extension services, state universities, USDA National Agricultural Statistics Service (NASS), and other experts (Deal 2000, Johnson 2000, Miller 2000, Stettler 2000, Sweeten 2000, and Wright 2000). Contacts at Cornell University provided survey data on dairy manure management practices in New York (Poe 1999). Census of Agriculture population data for 1992 and 1997 (USDA 1999e) were used in conjunction with the state data obtained from personal communications to determine regional percentages of total dairy cattle and dairy wastes that are managed using these systems. These percentages were applied to the total annual dairy cow and heifer state population data for 1990 through 2001, which were obtained from the National Agricultural Statistics Service (USDA 1995a, 1999a, 2000a-b, 2001a-b, 2002a-b).

Of the dairies using systems other than daily spread and pasture, range, or paddock systems, some dairies reported using more than one type of manure management system. Therefore, the total percent of systems reported by USDA for a region and farm size is greater than 100 percent. Typically, this means that some of the manure at a dairy is handled in one system (e.g., a lagoon), and some of the manure is handled in another system (e.g., drylot). However, it is unlikely that the same manure is moved from one system to another. Therefore, to avoid double counting emissions, the reported percentages of systems in use were adjusted to equal a total of 100 percent, using the same distribution of systems. For example, if USDA reported that 65 percent of dairies use deep pits to manage manure and 55 percent of dairies use anaerobic lagoons to manage manure, it was assumed that 54 percent (i.e., 65 percent divided by 120 percent) of the manure is managed with deep pits and 46 percent (i.e., 55 percent divided by 120 percent) of the manure is managed with anaerobic lagoons (ERG 2000).

Dairy Heifers: The percent of dairy heifer operations that are pasture, range, or paddock or that operate as daily spread was estimated using the same approach as dairy cows. Similar to beef cattle, dairy heifers are housed on drylots when not pasture based. Based on data from EPA's Office of Water (EPA 2001a), it was assumed that 100 percent of the manure excreted by dairy heifers is deposited in drylots and generates emissions. Estimates of runoff have been made by EPA's Office of Water for various geographic regions of the US (EPA 2001a).

Swine: Based on data collected during site visits for EPA's Office of Water (ERG 2000), manure from swine at large (greater than 2000 head) and medium (200 through 2000 head) operations are primarily managed using deep pit systems, liquid/slurry systems, or anaerobic lagoons. Manure management system data were obtained from USDA (USDA 1998d). It was assumed those operations with less than 200 head use pasture, range, or paddock systems. The percent of waste by system was estimated using the USDA data broken out by geographic region and farm size. Farm-size distribution data reported in the 1992 and 1997 Census of Agriculture (USDA 1999e) were used to determine the percentage of all swine utilizing the various manure management systems. The reported manure management systems were deep pit, liquid/slurry (also includes above- and below-ground slurry), anaerobic lagoon, and solid storage (also includes solids separated from liquids).

Some swine operations reported using more than one management system; therefore, the total percent of systems reported by USDA for a region and farm size is greater than 100 percent. Typically, this means that some of the manure at a swine operation is handled in one system (e.g., liquid system), and some of the manure is handled in another system (e.g., dry system). However, it is unlikely that the same manure is moved from one system to another. Therefore, to avoid double counting emissions, the reported percentages of systems in use were adjusted to equal a total of 100 percent, using the same distribution of systems, as explained under "Dairy Cows".

Sheep: It was assumed that all sheep wastes not deposited on feedlots were deposited on pasture, range, or paddock lands (Anderson 2000).

Goats/Horses: Estimates of manure management distribution were obtained from EPA's previous estimates (EPA 1992).

Poultry – Layers: Waste management system data for layers for 1990 were obtained from Appendix H of Global Methane Emissions from Livestock and Poultry Manure (EPA 1992). The percentage of layer operations using a shallow pit flush house with anaerobic lagoon or high-rise house without bedding was obtained for 1999 from United Egg Producers, voluntary survey, 1999 (UEP 1999). These data were augmented for key poultry states (AL, AR, CA, FL, GA, IA, IN, MN, MO, NC, NE, OH, PA, TX, and WA) with USDA data (USDA 2000i). It was

assumed that the change in system usage between 1990 and 1999 is proportionally distributed among those years of the inventory. It was assumed that system usage in 2000 and 2001 was equal to that estimated for 1999. It was also assumed that 1 percent of poultry wastes are deposited on pasture, range, or paddock lands (EPA 1992).

Poultry - Broilers/Turkeys: The percentage of turkeys and broilers on pasture or in high-rise houses without bedding was obtained from *Global Methane Emissions from Livestock and Poultry Manure* (EPA1992). It was assumed that 1 percent of poultry wastes are deposited in pastures, range, and paddocks (EPA 1992).

Step 4: Emission Factor Calculations

Methane conversion factors (MCFs) and nitrous oxide emission factors (EFs) used in the emission calculations were determined using the methodologies shown below:

Methane Conversion Factors (MCFs)

Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2000) for anaerobic lagoon systems published default methane conversion factors of 0 to 100 percent, which reflects the wide range in performance that may be achieved with these systems. There exist relatively few data points on which to determine country-specific MCFs for these systems. Therefore, a climate-based approach was identified to estimate MCFs for anaerobic lagoon and other liquid storage systems.

The following approach was used to develop the MCFs for liquid systems, and is based on the van't Hoff-Arrhenius equation used to forecast performance of biological reactions. One practical way of estimating MCFs for liquid manure handling systems is based on the mean ambient temperature and the van't Hoff-Arrhenius equation with a base temperature of 30°C, as shown in the following equation (Safley and Westerman 1990):

$$f = \exp\left[\frac{E(T_2 - T_1)}{RT_1T_2}\right]$$

Where:

 $T_1 = 303.16K$

 T_2 = ambient temperature (K) for climate zone (in this case, a weighted value for each state)

E = activation energy constant (15,175 cal/mol)

R = ideal gas constant (1.987 cal/K mol)

The factor "f" represents the proportion of volatile solids that are biologically available for conversion to methane based on the temperature of the system. The temperature is assumed equal to the ambient temperature. For colder climates, a minimum temperature of 5°C was established for uncovered anaerobic lagoons and 7.5°C for other liquid manure handling systems. For those animal populations using liquid systems (i.e., dairy cow, dairy heifer, layers, beef on feedlots, and swine) monthly average state temperatures were based on the counties where the specific animal population resides (i.e., the temperatures were weighted based on the percent of animals located in each county). The average county and state temperature data were obtained from the National Climate Data Center (NOAA 2001), and the county population data were based on 1992 and 1997 Census data (USDA 1999e). County population data for 1990 and 1991 were assumed to be the same as 1992; county population data for 1998 through 2001 were assumed to be the same as 1997; and county population data for 1993 through 1996 were extrapolated based on 1992 and 1997 data.

Annual MCFs for liquid systems are calculated as follows for each animal type, state, and year of the inventory:

- 1) Monthly temperatures are calculated by using county-level temperature and population data. The weighted-average temperature for a state is calculated using the population estimates and average monthly temperature in each county.
- 2) Monthly temperatures are used to calculate a monthly van't Hoff-Arrhenius "f" factor, using the equation presented above. A minimum temperature of 5°C is used for anaerobic lagoons and 7.5°C is used for liquid/slurry and deep pit systems.

- Monthly production of volatile solids that are added to the system is estimated based on the number of animals present and, for lagoon systems, adjusted for a management and design practices factor. This factor accounts for other mechanisms by which volatile solids are removed from the management system prior to conversion to methane, such as solids being removed from the system for application to cropland. This factor, equal to 0.8, has been estimated using currently available methane measurement data from anaerobic lagoon systems in the United States (ERG 2001).
- 4) The amount of volatile solids available for conversion to methane is assumed to be equal to the amount of volatile solids produced during the month (from Step 3). For anaerobic lagoons, the amount of volatile solids available also includes volatile solids that may remain in the system from previous months.
- 5) The amount of volatile solids consumed during the month is equal to the amount available for conversion multiplied by the "f" factor.
- 6) For anaerobic lagoons, the amount of volatile solids carried over from one month to the next is equal to the amount available for conversion minus the amount consumed.
- The estimated amount of methane generated during the month is equal to the monthly volatile solids consumed multiplied by the maximum methane potential of the waste (B_0) .
- 8) The annual MCF is then calculated as:

MCF
$$_{(annual)}$$
 = CH₄ generated $_{(annual)}$ / (VS generated $_{(annual)}$ × B₀)

Where:

MCF (annual) = Methane conversion factor

VS generated (annual) = Volatile solids excretion rate

 $B_0 = Maximum$ methane producing potential of the waste

In order to account for the carry-over of volatile solids from the year prior to the inventory year for which estimates are calculated, it is assumed in the MCF calculation for lagoons that a portion of the volatile solids from October, November, and December of the year prior to the inventory year are available in the lagoon system starting January of the inventory year.

Following this procedure, the resulting MCF accounts for temperature variation throughout the year, residual volatile solids in a system (carry-over), and management and design practices that may reduce the volatile solids available for conversion to methane. The MCFs presented in Table M-4 by state and waste management system represent the average MCF for 2001 by state for all animal groups located in that state. However, in the calculation of methane emissions, specific MCFs for each animal type in the state are used.

Nitrous Oxide Emission Factors

Nitrous oxide emission factors for all manure management systems were set equal to the default IPCC factors (IPCC 2000).

Step 5: Weighted Emission Factors

For beef cattle, dairy cattle, swine, and poultry, the emission factors for both methane and nitrous oxide were weighted to incorporate the distribution of wastes by management system for each state. The following equation was used to determine the weighted MCF for a particular animal type in a particular state:

$$MCF$$
 animal, state = $\sum_{system} (MCF$ system, state \times % $Manure$ animal, system, state)

Where:

MCF_{animal, state} = Weighted MCF for that animal group and state

 $MCF_{system. state} = MCF$ for that system and state (see Step 4)

% Manure_{animal, system, state} = Percent of manure managed in the system for that animal group in that state (expressed as a decimal)

The weighted nitrous oxide emission factor for a particular animal type in a particular state was determined as follows:

$$EF$$
 animal, state = $\sum_{system} (EF_{system} \times \% Manure$ animal, system, state)

Where:

EF_{animal, state} = Weighted emission factor for that animal group and state

 EF_{system} = Emission factor for that system (see Step 4)

% Manure_{animal, system, state} = Percent of manure managed in the system for that animal group in that state (expressed as a decimal)

Data for the calculated weighted factors for 1992 was taken from the 1992 Census of Agriculture, combined with assumptions on manure management system usage based on farm size, and were also used for 1990 and 1991. Data for the calculated weighted factors for 1997 was taken from the 1997 Census of Agriculture, combined with assumptions on manure management system usage based on farm size, and were also used for 1998, 1999, 2000, and 2001. Factors for 1993 through 1996 were calculated by interpolating between the two sets of factors. A summary of the weighted MCFs used to calculate beef feedlot, dairy cow and heifer, swine, and poultry emissions for 2001 are presented in Table M-5.

Step 6: Methane and Nitrous Oxide Emission Calculations

For beef feedlot cattle, dairy cows, dairy heifers, swine, and poultry, methane emissions were calculated for each animal group as follows:

Methane animal group =
$$\sum_{\text{state}} (Population \times VS \times B_o \times MCF_{animal, state} \times 0.662)$$

Where:

Methane_{animal group} = methane emissions for that animal group (kg CH_4/yr)

Population = annual average state animal population for that animal group (head)

VS = total volatile solids produced annually per animal (kg/yr/head)

B₀ = maximum methane producing capacity per kilogram of VS (m³ CH₄/kg VS)

MCF_{animal, state} = weighted MCF for the animal group and state (see Step 5)

0.662 = conversion factor of m³ CH₄ to kilograms CH₄ (kg CH₄/m³ CH₄)

Methane emissions from other animals (i.e., sheep, goats, and horses) were based on the 1990 methane emissions estimated using the detailed method described in *Anthropogenic Methane Emissions in the United States: Estimates for 1990, Report to Congress* (EPA 1993). This approach is based on animal-specific manure characteristics and management system data. This process was not repeated for subsequent years for these other animal types. Instead, national populations of each of the animal types were used to scale the 1990 emissions estimates to the period 1991 through 2001.

Nitrous oxide emissions were calculated for each animal group as follows:

Nitrous Oxide animal group =
$$\sum_{state} (Population \times N_{ex} \times EF_{animal, state} \times 44 / 28)$$

Where:

Nitrous Oxide_{animal group} = nitrous oxide emissions for that animal group (kg/yr)

Population = annual average state animal population for that animal group (head)

N_{ex} = total Kjeldahl nitrogen excreted annually per animal (kg/yr/head)

 $EF_{animal, state}$ = weighted nitrous oxide emission factor for the animal group and state, kg N_2O -N/kg N excreted (see Step 5)

44/28 = conversion factor of N₂O-N to N₂O

Emission estimates are summarized in Table M-6 and Table M-7.

Table M-1: Livestock Population (1,000 Head)

Animal Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Dairy Cattle	14,143	13,980	13,830	13,767	13,566	13,502	13,305	13,138	12,992	13,026	13,070	12,995
Dairy Cows	10,007	9,883	9,714	9,679	9,504	9,491	9,410	9,309	9,200	9,142	9,220	9,166
Dairy Heifer	4,135	4,097	4,116	4,088	4,062	4,011	3,895	3,829	3,793	3,884	3,850	3,828
Swine	53,941	56,478	58,532	58,016	59,951	58,899	56,220	58,728	61,991	60,245	58,892	58,960
Market Swine	47,043	49,247	51,276	50,859	52,669	51,973	49,581	51,888	55,150	53,871	52,658	52,772
Market <60 lbs.	18,359	19,212	19,851	19,434	20,157	19,656	18,851	19,886	20,691	19,928	19,582	19,628
Market 60-119 lbs.	11,734	12,374	12,839	12,656	13,017	12,836	12,157	12,754	13,552	13,256	12,933	12,940
Market 120-179 lbs.	9,440	9,840	10,253	10,334	10,671	10,545	10,110	10,480	11,235	11,043	10,753	10,747
Market >180 lbs.	7,510	7,822	8,333	8,435	8,824	8,937	8,463	8,768	9,672	9,645	9,390	9,457
Breeding Swine	6,899	7,231	7,255	7,157	7,282	6,926	6,639	6,840	6,841	6,374	6,233	6,188
Beef Cattle	86,087	87,267	88,548	90,321	92,571	94,391	94,269	92,290	90,730	90,032	89,215	88,598
Feedlot Steers	7,338	7,920	7,581	7,984	7,797	7,763	7,380	7,644	7,845	7,781	8,280	8,566
Feedlot Heifers	3,621	4,035	3,626	3,971	3,965	4,047	3,999	4,396	4,459	4,578	4,872	5,035
NOF Bulls ²	2,180	2,198	2,220	2,239	2,306	2,392	2,392	2,325	2,235	2,241	2,196	2,187
NOF Calves ²	23,909	23,853	24,118	24,209	24,586	25,170	25,042	24,363	24,001	23,895	23,508	22,953
NOF Heifers ²	8,872	8,938	9,520	9,850	10,469	10,680	10,869	10,481	9,998	9,725	9,353	9,224
NOF Steers ²	7,490	7,364	8,031	7,935	8,346	8,693	9,077	8,452	8,050	7,864	7,248	7,009
NOF Cows ²	32,677	32,960	33,453	34,132	35,101	35,645	35,509	34,629	34,143	33,948	33,760	33,624
Sheep	11,358	11,174	10,797	10,201	9,836	8,989	8,465	8,024	7,825	7,215	7,032	6,965
Sheep not on Feed	10,271	10,168	9,748	9,151	8,940	8,193	7,697	7,270	7,085	6,519	6,351	6,290
Sheep on Feed	1,088	1,055	1,049	1,050	896	797	768	754	740	696	681	675
Goats	2,516	2,516	2,516	2,410	2,305	2,200	2,095	1,990	1,990	1,990	1,990	1,990
Poultry	1,537,074	1,594,944	1,649,998	1,707,422	1,769,135	1,679,704	1,882,078	1,926,790	1,963,919	2,007,284	2,072,877	2,054,998
Hens >1 yr.	119,551	117,178	121,103	131,688	135,094	133,841	138,048	140,966	150,778	151,914	153,232	153,237
Pullets ¹	227,083	239,559	243,267	240,712	243,286	246,599	247,446	261,515	265,634	274,520	273,801	279,726
Chickens	6,545	6,857	7,113	7,240	7,369	7,637	7,243	7,549	7,682	9,659	8,088	8,126
Broilers	1,066,209	1,115,845	1,164,089	1,217,147	1,275,916	1,184,667	1,381,229	1,411,673	1,442,596	1,481,093	1,549,818	1,525,291
Turkeys	117,685	115,504	114,426	110,635	107,469	106,960	108,112	105,088	97,229	90,098	87,938	88,619
Horses	5,069	5,100	5,121	5,130	5,110	5,130	5,150	5,170	5,237	5,170	5,240	5,300

Note: Totals may not sum due to independent rounding.

1Pullets includes laying pullets, pullets younger than 3 months, and pullets older than 3 months.

2NOF = Not on Feed

Table M-2: Waste Characteristics Data

		Total Kjeldahl Nitrogen, N _{ex}	Maximum Methane Generation	Volatile Solids,
	Average	(kg/day per	Potential, B _o (m ³	VS (kg/day per
Animal Group	TAM (kg) Source	1,000 kg mass) Source	CH ₄ /kg VS added) Source	1,000 kg mass) Source
Dairy Cow	604 Safley 2000	0.44 USDA 1996a	0.24 Morris 1976	Table M-3 Peterson et al., 2002
Dairy Heifer	476 Safley 2000	0.31 USDA 1996a	0.17 Bryant et. al. 1976	Table M-3 Peterson et al., 2002
Feedlot Steers	420 USDA 1996a	0.30 USDA 1996a	0.33 Hashimoto 1981	Table M-3 Peterson et al., 2002
Feedlot Heifers	420 USDA 1996a	0.30 USDA 1996a	0.33 Hashimoto 1981	Table M-3 Peterson et al., 2002
NOF Bulls	750 Safley 2000	0.31 USDA 1996a	0.17 Hashimoto 1981	6.04 USDA 1996a
NOF Calves	159 USDA 1998c	0.30 USDA 1996a	0.17 Hashimoto 1981	6.41 USDA 1996a
NOF Heifers	420 USDA 1996a	0.31 USDA 1996a	0.17 Hashimoto 1981	Table M-3 Peterson et al., 2002
NOF Steers	318 Safley 2000	0.31 USDA 1996a	0.17 Hashimoto 1981	Table M-3 Peterson et al., 2002
NOF Cows	590 Safley 2000	0.33 USDA 1996a	0.17 Hashimoto 1981	Table M-3 Peterson et al., 2002
Market Swine <60 lbs.	15.88 Safley 2000	0.60 USDA 1996a	0.48 Hashimoto 1984	8.80 USDA 1996a
Market Swine 60-119 lbs.	40.60 Safley 2000	0.42 USDA 1996a	0.48 Hashimoto 1984	5.40 USDA 1996a
Market Swine 120-179 lbs.	67.82 Safley 2000	0.42 USDA 1996a	0.48 Hashimoto 1984	5.40 USDA 1996a
Market Swine >180 lbs.	90.75 Safley 2000	0.42 USDA 1996a	0.48 Hashimoto 1984	5.40 USDA 1996a
Breeding Swine	198 Safley 2000	0.24 USDA 1996a	0.48 Hashimoto 1984	2.60 USDA 1996a
Sheep	27 ASAE 1999	0.42 ASAE 1999	NA NA	NA NA
Goats	64 ASAE 1999	0.45 ASAE 1999	NA NA	NA NA
Horses	450 ASAE 1999	0.30 ASAE 1999	NA NA	NA NA
Hens >/= 1 yr	1.8 ASAE 1999	0.83 USDA 1996a	0.39 Hill 1982	10.8 USDA 1996a
Pullets	1.8 ASAE 1999	0.62 USDA 1996a	0.39 Hill 1982	9.7 USDA 1996a
Other Chickens	1.8 ASAE 1999	0.83 USDA 1996a	0.39 Hill 1982	10.8 USDA 1996a
Broilers	0.9 ASAE 1999	1.10 USDA 1996a	0.36 Hill 1984	15.0 USDA 1996a
Turkeys	6.8 ASAE 1999	0.74 USDA 1996a	0.36 Hill 1984	9.7 USDA 1996a

NA = Not Applicable. In these cases, methane emissions were projected based on animal population growth from base year.

Table M-3: Estimated Volatile Solids Production Rate By State for 2001

State	Dairy Cow kg/day/1000 kg	Dairy Heifer kg/day/1000 kg	NOF Cows kg/day/1000 kg	NOF Heifers kg/day/1000 kg	NOF Steers kg/day/1000 kg	Feedlot Heifers kg/day/1000 kg	Feedlot Steers kg/day/1000 kg
Alabama	8.56	6.82	6.74	7.16	7.47	3.33	3.26
Alaska	10.71	6.82	8.71	9.42	9.87	3.33	3.26
Arizona	10.71	6.82	8.71	9.43	9.87	3.33	3.26
Arkansas	8.06	7.57	6.72	7.13	7.45	3.36	3.30
California	9.36	6.82	6.57	6.95	7.27	3.32	3.26
Colorado	8.33	6.82	6.19	6.51	6.82	3.35	3.28
Connecticut	8.41	6.14	6.62	7.03	7.33	3.40	3.33
Delaware	8.41	6.14	6.62	7.01	7.33	3.40	3.33
Florida	8.56	6.82	6.74	7.17	7.47	3.33	3.26
Georgia	8.56	6.82	6.74	7.16	7.47	3.33	3.26
Hawaii	10.71	6.82	8.71	9.42	9.87	3.33	3.26
ldaho	10.71	6.82	8.71	9.40	9.87	3.33	3.26
Illinois	8.29	6.82	6.63	7.01	7.34	3.39	3.32
Indiana	8.29	6.82	6.63	7.01	7.34	3.39	3.32
lowa	8.29	6.82	6.63	7.00	7.34	3.39	3.32
Kansas	8.33	6.82	6.19	6.51	6.82	3.35	3.28
Kentucky	8.56	6.82	6.74	7.16	7.47	3.33	3.26
Louisiana	8.06	7.57	6.72	7.14	7.45	3.36	3.30
Maine	8.41	6.14	6.62	7.04	7.33	3.40	3.33
Maryland	8.41	6.14	6.62	7.02	7.33	3.40	3.33
Massachusetts	8.41	6.14	6.62	7.02	7.33	3.40	3.33
Michigan	8.29	6.82	6.63	7.02	7.34	3.39	3.32
Minnesota	8.29	6.82	6.63	7.01	7.34	3.39	3.32
Mississippi	8.56	6.82	6.74	7.17	7.47	3.33	3.26
Missouri	8.29	6.82	6.63	7.02	7.34	3.39	3.32
Montana	8.33	6.82	6.19	6.54	6.82	3.35	3.28
Nebraska	8.33	6.82	6.19	6.51	6.82	3.35	3.28
Nevada	10.71	6.82	8.71	9.41	9.87	3.33	3.26
New Hampshire	8.41	6.14	6.62	7.04	7.33	3.40	3.33
New Jersey	8.41	6.14	6.62	7.03	7.33	3.40	3.33
New Mexico	10.71	6.82	8.71	9.40	9.87	3.33	3.26
New York	8.41	6.14	6.62	7.01	7.33	3.40	3.33
North Carolina	8.56	6.82	6.74	7.17	7.47	3.33	3.26
North Dakota	8.33	6.82	6.19	6.52	6.82	3.35	3.28
Ohio	8.29	6.82	6.63	7.02	7.34	3.39	3.32
Oklahoma	8.06	7.57	6.72	7.02	7.45	3.36	3.30
	10.71	6.82	8.71	9.42	9.87	3.33	3.26
Oregon	8.41	6.14	6.62	7.02	7.33	3.40	3.33
Pennsylvania Rhode Island	8.41	6.14	6.62	7.02	7.33	3.40	3.33
South Carolina	8.56	6.82	6.74	7.0 4 7.17	7.33 7.47	3.40	3.26
South Dakota	8.33	6.82	6.19	6.52	6.82	3.35	3.28
Tennessee	8.56	6.82	6.74	7.16	7.47	3.33	3.26
Texas	8.06 10.71	7.57 6.82	6.72 8.71	7.11	7.45	3.36 3.33	3.30 3.26
Utah Vermont				9.41	9.87		
	8.41	6.14	6.62	7.02	7.33	3.40	3.33
Virginia	8.56	6.82	6.74	7.16	7.47	3.33	3.26
Washington	10.71	6.82	8.71	9.40	9.87	3.33	3.26
West Virginia	8.41	6.14	6.62	7.03	7.33	3.40	3.33
Wisconsin	8.29	6.82	6.63	7.01	7.34	3.39	3.32
Wyoming Source: Peterson	8.33	6.82	6.19	6.53	6.82	3.35	3.28

Source: Peterson et al., 2002.

Table M-4: Methane Conversion Factors By State for Liquid Systems¹ for 2001

State	Liquid/Slurry and Deep Pit	Anaerobic Lagoon
Alabama	0.3511	0.7663
Alaska	0.1507	0.4845
Arizona	0.4673	0.7918
Arkansas	0.3760	0.7617
California	0.3630	0.7554
Colorado	0.2297	0.6668
Connecticut	0.2545	0.6763
Delaware	0.2823	0.6862
Florida	0.5195	0.7935
Georgia	0.3263	0.6578
Hawaii	0.5973	0.7728
Idaho	0.2311	0.6741
Illinois	0.2935	0.7202
Indiana	0.2792	0.7097
lowa	0.2634	0.6986
Kansas	0.3401	0.7493
Kentucky	0.2726	0.6301
Louisiana	0.4542	0.7860
Maine	0.4342	0.6390
Maryland	0.2847	0.7190
Massachusetts	0.2448	0.6871
	0.2395	0.6751
Michigan Minnesota	0.2407	
		0.6785
Mississippi	0.4015	0.7722
Missouri	0.3252	0.7398
Montana	0.2153	0.6508
Nebraska	0.2815	0.7166
Nevada	0.2597	0.7009
New Hampshire	0.2191	0.6501
New Jersey	0.2778	0.7160
New Mexico	0.3210	0.7387
New York	0.2307	0.6683
North Carolina	0.3320	0.7473
North Dakota	0.2256	0.6612
Ohio	0.2652	0.6985
Oklahoma	0.3962	0.7681
Oregon	0.2120	0.6429
Pennsylvania	0.2610	0.7000
Rhode Island	0.2242	0.6032
South Carolina	0.3804	0.7690
South Dakota	0.2552	0.6970
Tennessee	0.2796	0.6343
Texas	0.4466	0.7817
Utah	0.2681	0.7116
Vermont	0.2134	0.6407
Virginia	0.2816	0.7142
Washington	0.2153	0.6498
West Virginia	0.2613	0.6968
Wisconsin	0.2353	0.6714
Wyoming	0.2244	0.6635
	V.== 1 1	2.0000

¹ As defined by IPCC (IPCC 2000).

Table M-5: Weighted Methane Conversion Factors for 2001

State	Beef	Beef	Dairy Cow	Dairy	Swine -	Swine -	Layer	Broiler	Turkey
	Feedlot-	Feedlot-		Heifer	Market	Breeding			
Alahama	Heifer	Steer	0.4040	0.0400	0.4889	0.4040	0.3290	0.0450	0.0450
Alabama Alaska	0.0200 0.0170	0.0170 0.0170	0.1019 0.1652	0.0189 0.0165	0.4889	0.4912 0.0150	0.3290	0.0150 0.0150	0.0150 0.0150
Arizona	0.0170	0.0176	0.1032	0.0165	0.5272	0.5272	0.1324	0.0150	0.0150
Arkansas	0.0109	0.0100	0.0150	0.0188	0.5499	0.5272	0.4642	0.0150	0.0150
California	0.0199	0.0199	0.0754	0.0184	0.5056	0.5022	0.0130	0.0150	0.0150
Colorado	0.0193	0.0197	0.5167	0.0164	0.2839	0.3022	0.4032	0.0150	0.0150
Connecticut	0.0139	0.0139	0.4303	0.0137	0.2039	0.2033	0.4032	0.0150	0.0150
Delaware	0.0173	0.0173	0.1062	0.0170	0.1443	0.1311	0.0492	0.0150	0.0150
Florida	0.0101	0.0101	0.0907	0.0173	0.3313	0.3313	0.0329	0.0150	0.0150
	0.0220	0.0220	0.4274	0.0204	0.2130	0.4957	0.3413	0.0150	0.0150
Georgia Hawaii	0.0200	0.0200	0.1403	0.0100	0.3966	0.4957	0.3236	0.0150	0.0150
Idaho	0.0228	0.0226	0.3474	0.0210	0.3900	0.3900	0.4043	0.0150	0.0150
Illinois	0.0139	0.0139	0.4309	0.0157	0.3354	0.2093	0.4043	0.0150	0.0150
		0.0167							
Indiana	0.0167 0.0166	0.0167	0.1002 0.1009	0.0164 0.0163	0.3230 0.4187	0.3233 0.4195	0.0150 0.0150	0.0150 0.0150	0.0150 0.0150
lowa		0.0100	0.1009	0.0163	0.4167	0.4193	0.0130		0.0150
Kansas	0.0170		0.1236		0.0016		0.0297	0.0150	
Kentucky	0.0182	0.0182		0.0175		0.4517		0.0150	0.0150
Louisiana	0.0209	0.0209	0.1121	0.0196	0.2039	0.2035	0.4777	0.0150	0.0150
Maine	0.0171 0.0178	0.0171 0.0177	0.0642	0.0167	0.0150	0.0150	0.0464	0.0150	0.0150
Maryland Massachusetts		0.0177	0.0916	0.0172	0.2957	0.2956	0.0507	0.0150	0.0150
	0.0174		0.0774	0.0169	0.1974	0.1968	0.0486	0.0150	0.0150
Michigan	0.0164	0.0164	0.1589 0.0916	0.0162	0.2937 0.3064	0.2927 0.3062	0.0284	0.0150	0.0150 0.0150
Minnesota	0.0164 0.0202	0.0164 0.0202	0.0910	0.0162 0.0190	0.5618	0.5622	0.0150 0.4697	0.0150	
Mississippi		0.0202						0.0150	0.0150
Missouri Montana	0.0169 0.0159	0.0169	0.1109 0.2602	0.0166 0.0157	0.3551 0.2625	0.3550 0.2625	0.0150 0.3985	0.0150 0.0150	0.0150 0.0150
			0.2002		0.2023		0.0291		
Nebraska Nevada	0.0167 0.0160	0.0167 0.0160	0.1065	0.0164 0.0157	0.3279	0.3275 0.0150	0.0291	0.0150 0.0150	0.0150 0.0150
	0.0100	0.0100	0.5146	0.0157	0.0130	0.0130	0.0130	0.0150	0.0150
New Hampshire	0.0172	0.0172	0.0733	0.0107	0.1226	0.1221	0.0470	0.0150	0.0150
New Jersey New Mexico	0.0176	0.0176	0.0031	0.0172	0.1694	0.1911	0.4606	0.0150	0.0150
New York	0.0102	0.0162	0.3294	0.0159	0.0130	0.0130	0.4606	0.0150	0.0150
North Carolina	0.0173	0.0173	0.0916	0.0100	0.5841	0.5824	0.3209	0.0150	0.0150
North Dakota	0.0162	0.0162	0.0675	0.0175	0.3641	0.3624	0.3209	0.0150	0.0150
Ohio	0.0166	0.0166	0.0073	0.0163	0.3032	0.3034	0.0277	0.0150	0.0150
Oklahoma	0.0166	0.0166	0.1021	0.0163	0.5767	0.5811	0.4671	0.0150	0.0150
	0.0100	0.0100	0.3603	0.0102	0.1098	0.3011	0.4671	0.0150	0.0150
Oregon Pennsylvania	0.0176	0.0176	0.2611	0.0172	0.1096	0.1090	0.1070	0.0150	0.0150
Rhode Island	0.0175	0.0176	0.0003	0.0170	0.1953	0.3167	0.0130	0.0150	0.0150
	0.0176	0.0176	0.0394	0.0171	0.1933	0.1933	0.4696	0.0150	0.0150
South Carolina South Dakota	0.0198	0.0196	0.1031	0.0167	0.3058	0.3149	0.4090	0.0150	0.0150
Tennessee	0.0182	0.0182	0.0549	0.0103	0.0025	0.3000	0.0203	0.0150	0.0150
	0.0162	0.0162	0.0551	0.0176		0.4236	0.0515	0.0150	0.0150
Texas Utah	0.0167	0.0167	0.3146	0.0163	0.5367 0.3313	0.3362	0.1075	0.0150	0.0150
	0.0160	0.0160	0.3811	0.0158	0.3313	0.3290	0.4377	0.0150	0.0150
Vermont Virginia	0.0172	0.0172	0.0637	0.0167	0.4896	0.4901	0.0456	0.0150	0.0150
	0.0178	0.0177	0.0525	0.0172	0.4696	0.4901	0.0497	0.0150	0.0150
Washington	0.0176	0.0160	0.3206	0.0172	0.2133	0.2097	0.0666	0.0150	0.0150
West Virginia	0.0176	0.0176	0.0009	0.0171	0.2066	0.2062	0.0493	0.0150	0.0150
Wisconsin Wyoming	0.0164	0.0164	0.1002		0.2757	0.2753	0.0281		0.0150
vvyorining	0.0108	0.0109	0.2303	0.0157	0.2003	0.2040	0.5331	0.0150	0.0130

Table M-6: CH4 Emissions from Livestock Manure Management (Gg)

Animal Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Dairy Cattle	545	585	573	565	623	640	611	639	661	700	693	719
Dairy Cows	535	575	564	556	614	631	602	631	653	691	684	711
Dairy Heifer	9	9	9	9	9	9	9	8	8	9	9	9
Swine	623	675	638	679	740	763	729	781	876	838	813	815
Market Swine	484	524	500	534	584	608	581	626	716	683	665	666
Market <60 lbs.	102	110	103	109	119	121	116	125	140	131	128	128
Market 60-119 lbs.	101	111	104	110	119	123	117	127	143	136	132	132
Market 120-179 lbs.	136	147	140	151	165	170	164	175	200	191	185	184
Market >180 lbs.	145	156	152	165	182	193	185	198	233	225	220	221
Breeding Swine	139	151	138	146	156	155	148	156	160	156	148	150
Beef Cattle	161	160	161	161	164	164	164	161	158	158	157	155
Feedlot Steers	21	19	19	17	16	14	14	15	15	15	16	16
Feedlot Heifers	10	11	9	10	9	8	8	8	9	9	9	9
NOF Bulls	6	6	6	6	6	7	7	6	6	6	6	6
NOF Calves	15	15	15	15	15	16	16	15	15	15	15	14
NOF Heifers	16	17	18	18	19	20	20	19	18	18	17	17
NOF Steers	11	11	12	11	12	12	13	12	12	12	11	10
NOF Cows	80	81	82	84	86	87	87	85	84	83	83	82
Sheep	3	3	3	3	3	2	2	2	2	2	2	2
Goats	1	1	1	1	1	1	1	1	1	1	1	1
Poultry	128	129	125	129	129	124	125	127	130	124	125	128
Hens >1 yr.	33	31	33	34	34	33	32	31	33	31	31	31
Total Pullets	63	65	59	60	60	58	56	58	60	56	57	60
Chickens	4	4	4	4	4	4	3	3	4	3	3	3
Broilers	19	20	21	21	22	21	24	25	25	26	27	27
Turkeys	10	10	10	10	9	9	9	9	8	8	8	8
Horses	29	29	29	29	29	29	29	29	30	29	30	30

Table M-7: N₂O Emissions from Livestock Manure Management (Gg)

Animal Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Dairy Cattle	13.9	13.6	13.5	13.4	13.3	13.2	13.0	12.9	12.7	12.7	12.7	12.6
Dairy Cows	9.4	9.3	9.0	8.9	8.7	8.7	8.6	8.4	8.2	8.2	8.2	8.1
Dairy Heifer	4.4	4.4	4.4	4.5	4.6	4.6	4.5	4.5	4.5	4.6	4.6	4.6
Swine	1.2	1.2	1.3	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.4
Market Swine	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.1
Market <60 lbs.	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Market 60-119 lbs.	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Market 120-179 lbs.	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Market >180 lbs.	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
Breeding Swine	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Beef Cattle	15.8	17.3	16.2	17.3	17.0	17.1	16.5	17.4	17.8	17.9	19.0	19.7
Feedlot Steers	10.6	11.5	11.0	11.5	11.3	11.2	10.7	11.1	11.3	11.3	12.0	12.4
Feedlot Heifers	5.2	5.8	5.2	5.7	5.7	5.9	5.8	6.4	6.4	6.6	7.0	7.3
Sheep	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Goats	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Poultry	20.5	20.9	21.3	21.6	22.1	20.9	23.2	23.3	23.2	23.2	23.8	23.6
Hens >1 yr.	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Pullets	1.0	1.0	1.0	0.9	0.9	0.8	0.8	0.8	0.8	0.8	8.0	0.8
Chickens	+	+	+	+	+	+	+	+	+	+	+	+
Broilers	12.0	12.5	13.1	13.7	14.3	13.3	15.5	15.9	16.2	16.7	17.4	17.1
Turkeys	6.7	6.6	6.5	6.3	6.1	6.1	6.2	6.0	5.6	5.1	5.0	5.1
Horses	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7

⁺ Emission estimate is less than 0.1 Gg